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Abstract

The fourth order partial differential equation representing beams under random loading is considered. A general
solution for this equation is obtained using the eigenfunction and variation of parameters techniques. Also the average
and the variance of the beam deflection, shear and bending moment are obtained. The load is divided into a deter-
ministic function and a randomly perturbed function representing the expected error in the deterministic load. The
general closed form solution is obtained in stochastic integral terms. Some important statistical moments of the solution
process are computed and illustrated. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The differential equations (DEs) are influenced by random uncertainties in its differential operators,
initial conditions and boundary conditions. Recently, such equations are the interest of many investigators,
see for example Soong (1973) and Oksendal (1985). These equations are classified as stochastic ordinary DE
or partial DE according to the nature of the models. The stochastic vibration equations are good examples
of the first type, see Lin and Cai (1995) and Roberts and Spanos (1990) as examples. The stochastic dif-
fusion equations and the stochastic wave equations are good examples of the second type, see El-Tawil
(1996) and El-Tawil and Ebady (1999).

The beam equation is a fourth order partial DE and has very wide applications in structural engineering.
As a DE, it has its own problems concerning existence, uniqueness and methods of solutions (Pipes and
Harvill, 1970). As an engineering problem, it has its applications in beams, bridges and other structures
(Clough and Penzien, 1975). Vanmarcke and Grigoriu (1983) discussed the analysis of shear beams of
random rigidity. Spanos and Ghanem (1989) discussed the solution of problems involving material vari-
ability. The use of the stochastic finite element, SFEM, is famous in solving such problems (Baker et al.,
1989; Behdinan et al., 1997; Haiato and Peng, 1998).
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Analytically, Mahmoud and El-Tawil (1990, 1992) solved a beam resting on stochastic elastic supports.
Recently, Elshakoff et al. (1999) presented solutions for four different classes of beam problems under
deterministic or random loads.

In this paper, the general fourth order stochastic partial DE, known as the beam equation, is solved
analytically in a general closed form expression depending on the governing parameters and under
stochastically perturbed loads. The statistical moments of the beam deflection are computed in general
closed form expressions. A case study is illustrated through some parametric studies.

2. General analysis

The general beam equation under random dynamic loading is known as the following (Paz, 1991):

o’ Q?U(x,1) ?U(x,1) U (x,1)
@<E](x) - >+pA O

where 4 is the beam cross-section area, £ the Young’s modulus of elasticity, / the moment of inertia of
beam cross-section, p the mass per unit volume of beam cross-section, C the damping coefficient, U(x, ¢; »)
the beam deflection, F(x,# ®) the random dynamic load, in which w: a random outcome of a triple
probability space (€, k, P), where 2 is a sample space, i is g-algebra associated with Q, P is a probability
measure. Fig. 1 shows the general shape of a beam.

Considering the case of a constant moment of inertia, dividing by pA4 and introducing the following
parameters:

= F(x,t; ), (1)

e . Flx,tm) ,  EI
C_pA’ Gx, ;) = oA oc—pA,
Eq. (1) takes the following form:
H*U(x,t) PU(x,t)  0U(x,1)
2 ) ) ’ _ .
o + 22 +c o = G(x,t; w) (2)
For the simply supported beam the following boundary conditions are applied
U(0,1) =0, (3)
*U
@ (07 t) = 07 (4)
UU? t) =0, (5)
U
a2 (LD =0, (6)

where [ is the beam length. The initial conditions are taken as general deterministic functions of x as the
following:

§IE » X

Fig. 1. The general shape of a simple beam.
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U, 0) = f(x), (7)
ou
5, (.0) = g(x). ®)

Using the technique of eigenfunction expansion (Farlow, 1982) Eq. (2) has the following general solution:
= nmx

Ulx,t;w) = T,(t; in—. 9

(xt50) = 3Tt 0)sin ©)

Expanding the dynamic load G(x,#; ) as sine Fourier series and substituting from Eq. (9) into Eq. (2), the
following condition is obtained:

. . 4
1,0 + eBi(0) + 7 () T(0) = fulss ), (10)
where
2 /! . nmX
0
Using Egs. (7) and (8), Eq. (10) is solved under the following initial conditions:
!
,0) =2 [ £(x)sin"ax, (12)
I Jo /
!
7,,(0) :%/ g(x)sin?dx. (13)
0
Using the technique of variation of parameters (Pipes and Harvill, 1970), Eq. (10) has the general solution:
7—;1(t> = Cln(t; CO)Tln + C2n(t; G)) T2n (14)
in which
D (2) /(8
Cultio) == [ B g, 0 20,
v (15)
T (1) (8 )
Cou(t;0) = | 22 4y,
i) = [ 20
where
ﬂn(f) - Tln(t)TZ'z(t) - Tln(t)TZn(t)' (16)

The functions T,(¢) and 75,(¢) are the homogeneous independent solutions of Eq. (10).

It has to be noted that the integrals in equalities (11), (14), and (15) are of a special type of integrals
called a stochastic integral (McKean, 1969). Appendix A shows some important points on this subject in
the mean square sense used in this paper.

3. Statistical moments of the solution process

The interest of this paper is to compute the ensemble average and the root m.s. error (the standard
deviation) of the beam deflection analytically. This interest avoids the paper the problems coming out from
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the stochastic integrals theory. What really needed is the commutation property between the expectation
operator E and the integration in m.s. sense, see Theorem A.2 in Appendix A.

Taking the ensemble average of the general solution given in Eq. (9), the average of the beam deflection
takes the following form:

U, ;) = Y [ECu (1 ) Tip(1) + ECo (1 0) T (1) sin -
n=1
in which
1,(t)
where
2 [ . nmx
Ef,(t; ) :7/ EG(x,t; ®) sdex, .
0

The variance of the beam deflection is finally computed as the following:

Var U(x, t; w) ZZ sm— sm@Cov(fn, En),s (20)
n=1 m=
where
2 2
COV(fn, ém) = E(é Eé ) - ZZTm /mCOV Cma ij) (21)
i=1 j=1
and
én = ClnTln + CZnTZn' (22)
The covariance term in Eq. (21) can be evaluated as the following:
Tn Tm E n m
Cov(Can, Cin) / / k)12 nf( () 1n4) 444 - EC,EC, (23)

and the other terms are evaluated in a similar manner. Now, the average function in the double integration
of Eq. (23) can be evaluated as the following:

Efofu = 12/ / sm— s1n—EG(x t; 0)G(v, t; ) dx do. (24)

It is clear that the computations are related sequentially to the correlation function of the load.
It has to be noted that the analysis in the present paper assumes the existence of the load average and
correlation. Also, the integrals appear in equalities are assumed to exist.

4. Case study

Practically, the stochastic uncertainty of the load can be constructed in a perturbation way. Let the
stochastic part be as a perturbation function for the deterministic one, i.e.

G(x,t; w) = p(x,t) + ep(x, t; w), (25)
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where the stochastic process (s.p.) in equality (23) has a zero mean. This means that the average of the load
is the deterministic part p(x,¢). The general solution approaches the deterministic one when the stochastic
scale parameter ¢ tends to zero. The average of the beam deflection is computed through the same equation
(17) and its consequences. Namely, Eq. (19) becomes:

1
Ef(t:) :% /0 Pl 1) sin " dx (26)

The variance is computed using Eq. (20) and its consequences except for equality (24) which becomes:

Efufn = 12/ / sm@ s1n—(p(x Op(v,t) + EE@(x,t; ) p(v, t; )) dxdv. (27)

5. Illustrative examples
5.1. Hllustrative example-1

To illustrate the results obtained in the previous case study, take a beam of short span bridge of length
=10 m, p4=0.122 t/m’, I = 92080 x 10~® m* Young’s modulus E = 2.1 x 107 t/m? then o> will be
158498. Also let

p(x,7) = 4¢ "' sin ? (28)
and

o(x, t; ) = 4 ""n(t; ) sin ™ (29)

)

where n(¢) is a time white noise which is known to have a zero mean and correlated as Dirac delta function
(Arnold, 1974).
The initial displacement and velocity will be considered as:

£(x) = 0.01 sin”—lx (30)
and
g(x) = 0.001 m/s. (31)

Performing the lengthy computations, the following results are obtained:
EU(x,t) = e 4171 (0.02124¢"*" 4 0.01 cos 39.29¢ 4 0.00013676 sin 39.29¢) sinn—lx
+1.2001 x 107%sin 353.64¢ sin? +2.592 x 1072 sin 982.32¢ sin?
+9.45 x 107* sin 1925.35¢ sin? +4.44 x 10 *sin 3182.72¢ singg + - (32)

and
Var U(x, t; w) = 0.56169¢” sin’ 7 e’oz’, (33)

where only the first mode was used in the variance computations.The results are illustrated through Figs. 2-6.
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(b)

Fig. 2. Beam deflection with the span (x) and the time (¢): (a) the first mode (due to deterministic part of the load) and (b) the RMS
(due to stochastic part of the load).
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Fig. 3. The first mode of the beam deflection (due to deterministic part of the load) with (a) the span (x) in meters at different times and
(b) the time (¢) at mid-span.
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Fig. 4. The absolute value of beam deflection (due to stochastic part of the load) with (a) the span (x) for different values of Epslon and
at time =4 s and (b) the time (¢) for different values of Epslon.

5.2. Hllustrative example-11

In this example, more complicated load covariance function is considered to illustrate the analysis for a
continuous load covariance function. Considering the same beam in the previous example and taking the

load function as the sinusoidal process
o(x,t; ®) = {sin2nt where ( is uniformly distributed in [0, 1].
It can be shown that (Viniotis, 1998),
Eq@(x,t;w) = §sin 2t Varo(x, ;) = 35 sin? 27t
and
(34)

Cov(ty, 1) = 5sin 2nty sin 27t,.

For the first mode,
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Fig. 5. Percentage of (stochastic deflection/deterministic deflection) with the time (¢) for different values of Epslon and at mid-span.
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Fig. 6. Upper and lower bounds for mid-span deflection with time (¢) for Epslon = 0.5%.

ECyi(t; w) = —0.1328122e4"(—0.01097076127 sin 45.572¢ — 0.00009870122268 cos 45.572¢
+0.01514550619 sin 33.008¢ + 0.0001881258343 cos 33.008¢)

ECy (t; w) = —0.1328122 e’0‘41’(—0.01097076127 c0s45.572¢ 4+ 0.00009870122268 sin 45.572¢
+ 0.01514550619 cos 33.0087 — 0.0001881258343 sin 33.008¢)
and

T1(t) = e"* cos 39.29¢, T5(t) = " sin 39.29¢.

Finally, the mean of the first mode beam deflection is

EU, (x,t; 0) = —0.1328122 sin”—lx (—0.000089424 cos 2 + 0.0004174745 sin 2nz). (35)

According to Eqgs. (20) through (22), and after lengthy computations, the variance of the beam deflection is
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Var U()C7 t; U)) = sin2 n—lx{Tl (t)Tl (f)COV(Cll, Cll) + Tl (l‘)TQ(Z‘)COV(C'“7 C21) + Tz(l)Tl(t)COV(CZI, Cll)
+ D (1) T2 (1)Cov(Car, Can) },
where

Cov(Cyy, Cyy) = [0.1328122e7%4(—0.01097076127 sin 45.572¢ — 0.00009870122268 cos 45.572¢
+0.01514550619 sin 33.0087 + 0.0001881258343 cos 33.008t)]2,

Cov(Cyy, Cyp) = [—0.1328122e7%4(—0.01097076127 cos 45.572¢ + 0.00009870122268 sin 45.572¢
—+0.01514550619 cos 33.008¢ — 0.0001881258343 sin 33.008t)]2,

Cov(Cyy, Cyy) = Cov(Cyy, Chy)
= [-0.1328122e7 "4 (~0.01097076127 sin 45.572¢ — 0.00009870122268 cos 45.572¢
+0.01514550619 sin 33.008¢ + 0.0001881258343 cos 33.008¢)]
x [—0.1328122 e_0'41’(70.01097076127 c0s45.572¢ + 0.00009870122268 sin 45.572¢
+0.01514550619 cos 33.008¢ — 0.0001881258343 sin 33.0081)].

6. Results and conclusions

From the illustrative example-I, Fig. 3 shows that the root m.s. error is maximum at the mid span and
cannot be ignored in the design of the beam when considering the random uncertainty of the load.

The vibrations of the mean function of the beam deflection died with time and attain its maximum at the
mid span as expected as shown in Fig. 2. This is due to the mathematical nature of the load equation (28).

Appendix A. On stochastic integrals
A second order s.p. X (¢; @) is characterized by that its m.s. is finite, i.e.

X)) = EX*(;0) <00, t€T (A1)
and the sequence {X,(#; w),t € T} of second order s.p. converges to a second order s.p. on 7 iff the cor-
relation functions E{X,(#; ®)X,.(s; w),¢ € T} converge to a finite function EX (¢; )X (s; w) as n,m — oo in
any manner whatever (Soong, 1973, p. 89). Also, a second order s.p. is m.s. continuous iff its correlation
function is continuous.

Theorem A.1.

The s.p. Y(u) = [ Zf(t, u)X (¢; w)dt 3 iff the ordinary double Riemann integral

/ab/abf(fv u)f (s,u) Ty (t,5)deds

exists and is finite, where I'xy(t,s) is the correlation function of X (#) (Soong, 1973, p. 100).
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Theorem A.2.

b
If ¥ (u) = / F(t,u)X(6;w)de T then

EY(u) = /bf(t, u).EX(t; w)dt,

also,

Pyy(u,0) = / / F(6,1)f (5, 0) Py (1, 5) deds,

Soong (1973, p. 104).
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