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Abstract

The fourth order partial differential equation representing beams under random loading is considered. A general

solution for this equation is obtained using the eigenfunction and variation of parameters techniques. Also the average

and the variance of the beam deflection, shear and bending moment are obtained. The load is divided into a deter-

ministic function and a randomly perturbed function representing the expected error in the deterministic load. The

general closed form solution is obtained in stochastic integral terms. Some important statistical moments of the solution

process are computed and illustrated. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The differential equations (DEs) are influenced by random uncertainties in its differential operators,
initial conditions and boundary conditions. Recently, such equations are the interest of many investigators,
see for example Soong (1973) and Oksendal (1985). These equations are classified as stochastic ordinary DE
or partial DE according to the nature of the models. The stochastic vibration equations are good examples
of the first type, see Lin and Cai (1995) and Roberts and Spanos (1990) as examples. The stochastic dif-
fusion equations and the stochastic wave equations are good examples of the second type, see El-Tawil
(1996) and El-Tawil and Ebady (1999).

The beam equation is a fourth order partial DE and has very wide applications in structural engineering.
As a DE, it has its own problems concerning existence, uniqueness and methods of solutions (Pipes and
Harvill, 1970). As an engineering problem, it has its applications in beams, bridges and other structures
(Clough and Penzien, 1975). Vanmarcke and Grigoriu (1983) discussed the analysis of shear beams of
random rigidity. Spanos and Ghanem (1989) discussed the solution of problems involving material vari-
ability. The use of the stochastic finite element, SFEM, is famous in solving such problems (Baker et al.,
1989; Behdinan et al., 1997; Haiato and Peng, 1998).
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Analytically, Mahmoud and El-Tawil (1990, 1992) solved a beam resting on stochastic elastic supports.
Recently, Elshakoff et al. (1999) presented solutions for four different classes of beam problems under
deterministic or random loads.

In this paper, the general fourth order stochastic partial DE, known as the beam equation, is solved
analytically in a general closed form expression depending on the governing parameters and under
stochastically perturbed loads. The statistical moments of the beam deflection are computed in general
closed form expressions. A case study is illustrated through some parametric studies.

2. General analysis

The general beam equation under random dynamic loading is known as the following (Paz, 1991):

o2

ox2
EI xð Þ o

2Uðx; tÞ
ox2

� �
þ qA

o2Uðx; tÞ
ot2

þ C
oUðx; tÞ

ot
¼ F ðx; t;xÞ; ð1Þ

where A is the beam cross-section area, E the Young’s modulus of elasticity, I the moment of inertia of
beam cross-section, q the mass per unit volume of beam cross-section, C the damping coefficient, Uðx; t;xÞ
the beam deflection, F ðx; t;xÞ the random dynamic load, in which x: a random outcome of a triple
probability space (X; j; P ), where X is a sample space, j is r-algebra associated with X, P is a probability
measure. Fig. 1 shows the general shape of a beam.

Considering the case of a constant moment of inertia, dividing by qA and introducing the following
parameters:

c ¼ C
qA

; Gðx; t;xÞ ¼ F ðx; t;xÞ
qA

; a2 ¼ EI
qA

;

Eq. (1) takes the following form:

a2 o
4Uðx; tÞ
ox4

þ o2Uðx; tÞ
ot2

þ c
oUðx; tÞ

ot
¼ Gðx; t;xÞ ð2Þ

For the simply supported beam the following boundary conditions are applied

Uð0; tÞ ¼ 0; ð3Þ

o2U
ox2

ð0; tÞ ¼ 0; ð4Þ

Uðl; tÞ ¼ 0; ð5Þ

o2U
ox2

ðl; tÞ ¼ 0; ð6Þ

where l is the beam length. The initial conditions are taken as general deterministic functions of x as the
following:

Fig. 1. The general shape of a simple beam.
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Uðx; 0Þ ¼ f ðxÞ; ð7Þ

oU
ot

ðx; 0Þ ¼ gðxÞ: ð8Þ

Using the technique of eigenfunction expansion (Farlow, 1982) Eq. (2) has the following general solution:

Uðx; t;xÞ ¼
X1
n¼1

Tnðt;xÞ sin npx
l

: ð9Þ

Expanding the dynamic load Gðx; t;xÞ as sine Fourier series and substituting from Eq. (9) into Eq. (2), the
following condition is obtained:

€TTnðtÞ þ c _TTnðtÞ þ a2 np
l

� �4

TnðtÞ ¼ fnðt;xÞ; ð10Þ

where

fnðt;xÞ ¼ 2

l

Z l

0

Gðx; t;xÞ sin npx
l

dx: ð11Þ

Using Eqs. (7) and (8), Eq. (10) is solved under the following initial conditions:

Tnð0Þ ¼
2

l

Z l

0

f ðxÞ sin npx
l

dx; ð12Þ

_TTnð0Þ ¼
2

l

Z l

0

gðxÞ sin npx
l

dx: ð13Þ

Using the technique of variation of parameters (Pipes and Harvill, 1970), Eq. (10) has the general solution:

TnðtÞ ¼ C1nðt;xÞT1n þ C2nðt;xÞT2n ð14Þ

in which

C1nðt;xÞ ¼ �
Z

T2nðtÞfnðt;xÞ
gnðtÞ

dt; gnðtÞ 6¼ 0;

C2nðt;xÞ ¼
Z

T1nðtÞfnðt;xÞ
gnðtÞ

dt;
ð15Þ

where

gnðtÞ ¼ T1nðtÞ _TT2nðtÞ � _TT1nðtÞT2nðtÞ: ð16Þ

The functions T1nðtÞ and T2nðtÞ are the homogeneous independent solutions of Eq. (10).
It has to be noted that the integrals in equalities (11), (14), and (15) are of a special type of integrals

called a stochastic integral (McKean, 1969). Appendix A shows some important points on this subject in
the mean square sense used in this paper.

3. Statistical moments of the solution process

The interest of this paper is to compute the ensemble average and the root m.s. error (the standard
deviation) of the beam deflection analytically. This interest avoids the paper the problems coming out from
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the stochastic integrals theory. What really needed is the commutation property between the expectation
operator E and the integration in m.s. sense, see Theorem A.2 in Appendix A.

Taking the ensemble average of the general solution given in Eq. (9), the average of the beam deflection
takes the following form:

EUðx; t;xÞ ¼
X1
n¼1

EC1nðt;xÞT1nðtÞ½ þ EC2nðt;xÞT2nðtÞ	 sin
npx
l

ð17Þ

in which

EC1nðt;xÞ ¼ �
Z

T2nðtÞEfnðt;xÞdt
gnðtÞ

; ð18Þ

where

Efnðt;xÞ ¼ 2

l

Z l

0

EGðx; t;xÞ sin npx
l

dx: ð19Þ

The variance of the beam deflection is finally computed as the following:

VarUðx; t;xÞ ¼
X1
n¼1

X1
m¼1

sin
npx
l

sin
mpx
l

Covðnn; nmÞ; ð20Þ

where

Covðnn; nmÞ ¼ Eðnn � EnnÞðnm � EnmÞ ¼
X2

i¼1

X2

j¼1

TinTjmCovðCin;CjmÞ ð21Þ

and

nn ¼ C1nT1n þ C2nT2n: ð22Þ
The covariance term in Eq. (21) can be evaluated as the following:

CovðC1n;C1mÞ ¼
Z Z

T2nðhÞT2mðqÞEfnðhÞfmðqÞ
gnðhÞgmðqÞ

dhdq� EC1nEC1m ð23Þ

and the other terms are evaluated in a similar manner. Now, the average function in the double integration
of Eq. (23) can be evaluated as the following:

Efnfm ¼ 4

l2

Z l

0

Z l

0

sin
npx
l

sin
mpv
l

EGðx; t;xÞGðv; t;xÞdxdv: ð24Þ

It is clear that the computations are related sequentially to the correlation function of the load.
It has to be noted that the analysis in the present paper assumes the existence of the load average and

correlation. Also, the integrals appear in equalities are assumed to exist.

4. Case study

Practically, the stochastic uncertainty of the load can be constructed in a perturbation way. Let the
stochastic part be as a perturbation function for the deterministic one, i.e.

Gðx; t;xÞ ¼ pðx; tÞ þ euðx; t;xÞ; ð25Þ
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where the stochastic process (s.p.) in equality (23) has a zero mean. This means that the average of the load
is the deterministic part pðx; tÞ. The general solution approaches the deterministic one when the stochastic
scale parameter e tends to zero. The average of the beam deflection is computed through the same equation
(17) and its consequences. Namely, Eq. (19) becomes:

Efnðt;xÞ ¼ 2

l

Z l

0

pðx; tÞ sin npx
l

dx: ð26Þ

The variance is computed using Eq. (20) and its consequences except for equality (24) which becomes:

Efnfm ¼ 4

l2

Z l

0

Z l

0

sin
npx
l

sin
mpv
l

ðpðx; tÞpðv; tÞ þ e2Euðx; t;xÞuðv; t;xÞÞdxdv: ð27Þ

5. Illustrative examples

5.1. Illustrative example-I

To illustrate the results obtained in the previous case study, take a beam of short span bridge of length
l ¼ 10 m, qA ¼ 0:122 t/m’, I ¼ 92080
 10�8 m4, Young’s modulus E ¼ 2:1
 107 t/m2 then a2 will be
158 498. Also let

pðx; tÞ ¼ 4e�0:1t sin
px
l

ð28Þ

and

uðx; t;xÞ ¼ 4e�0:1tnðt;xÞ sin px
l
; ð29Þ

where nðtÞ is a time white noise which is known to have a zero mean and correlated as Dirac delta function
(Arnold, 1974).

The initial displacement and velocity will be considered as:

f ðxÞ ¼ 0:01 sin
px
l

ð30Þ

and

gðxÞ ¼ 0:001 m=s: ð31Þ

Performing the lengthy computations, the following results are obtained:

EUðx; tÞ ¼ e�0:41t ð0:02124e0:31t
�

þ 0:01 cos 39:29t þ 0:00013676 sin 39:29tÞ sin px
l

þ 1:2001
 10�2 sin 353:64t sin
3px
l

þ 2:592
 10�3 sin 982:32t sin
5px
l

þ 9:45
 10�4 sin 1925:35t sin
7px
l

þ 4:44
 10�4 sin 3182:72t sin
9px
l

þ � � �
�

ð32Þ

and

VarUðx; t;xÞ ¼ 0:56169e2 sin2 px
l
e�0:2t; ð33Þ

where only the first mode was used in the variance computations.The results are illustrated through Figs. 2–6.
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Fig. 3. The first mode of the beam deflection (due to deterministic part of the load) with (a) the span ðxÞ in meters at different times and

(b) the time ðtÞ at mid-span.

Fig. 2. Beam deflection with the span ðxÞ and the time ðtÞ: (a) the first mode (due to deterministic part of the load) and (b) the RMS

(due to stochastic part of the load).
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5.2. Illustrative example-II

In this example, more complicated load covariance function is considered to illustrate the analysis for a
continuous load covariance function. Considering the same beam in the previous example and taking the
load function as the sinusoidal process

uðx; t;xÞ ¼ f sin 2pt where f is uniformly distributed in ½0; 1	:

It can be shown that (Viniotis, 1998),

Euðx; t;xÞ ¼ 1
2
sin 2pt; Varuðx; t;xÞ ¼ 1

12
sin2 2pt

and

Covðt1; t2Þ ¼ 1
12
sin 2pt1 sin 2pt2: ð34Þ

For the first mode,

Fig. 4. The absolute value of beam deflection (due to stochastic part of the load) with (a) the span ðxÞ for different values of Epslon and

at time ¼ 4 s and (b) the time ðtÞ for different values of Epslon.
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EC11ðt;xÞ ¼ �0:1328122e�0:41tð�0:01097076127 sin 45:572t � 0:00009870122268 cos 45:572t

þ0:01514550619 sin 33:008t þ 0:0001881258343 cos 33:008tÞ

EC21ðt;xÞ ¼ �0:1328122e�0:41tð�0:01097076127 cos 45:572t þ 0:00009870122268 sin 45:572t

þ 0:01514550619 cos 33:008t � 0:0001881258343 sin 33:008tÞ

and

T1ðtÞ ¼ e0:41t cos 39:29t; T2ðtÞ ¼ e0:41t sin 39:29t:

Finally, the mean of the first mode beam deflection is

EU1ðx; t;xÞ ¼ �0:1328122 sin
px
l
ð�0:000089424 cos 2pt þ 0:0004174745 sin 2ptÞ: ð35Þ

According to Eqs. (20) through (22), and after lengthy computations, the variance of the beam deflection is

Fig. 6. Upper and lower bounds for mid-span deflection with time ðtÞ for Epslon ¼ 0:5%.

Fig. 5. Percentage of (stochastic deflection/deterministic deflection) with the time ðtÞ for different values of Epslon and at mid-span.
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VarUðx; t;xÞ ¼ sin2 px
l
fT1ðtÞT1ðtÞCovðC11;C11Þ þ T1ðtÞT2ðtÞCovðC11;C21Þ þ T2ðtÞT1ðtÞCovðC21;C11Þ

þ T2ðtÞT2ðtÞCovðC21;C21Þg;

where

CovðC11;C11Þ ¼ ½�0:1328122e�0:41tð�0:01097076127 sin 45:572t � 0:00009870122268 cos 45:572t

þ 0:01514550619 sin 33:008t þ 0:0001881258343 cos 33:008tÞ	2;

CovðC21;C21Þ ¼ ½�0:1328122e�0:41tð�0:01097076127 cos 45:572t þ 0:00009870122268 sin 45:572t

þ 0:01514550619 cos 33:008t � 0:0001881258343 sin 33:008tÞ	2;

CovðC11;C21Þ ¼ CovðC21;C11Þ
¼ ½�0:1328122e�0:41tð�0:01097076127 sin 45:572t � 0:00009870122268 cos 45:572t

þ 0:01514550619 sin 33:008t þ 0:0001881258343 cos 33:008tÞ	

 ½�0:1328122e�0:41tð�0:01097076127 cos 45:572t þ 0:00009870122268 sin 45:572t

þ 0:01514550619 cos 33:008t � 0:0001881258343 sin 33:008tÞ	:

6. Results and conclusions

From the illustrative example-I, Fig. 3 shows that the root m.s. error is maximum at the mid span and
cannot be ignored in the design of the beam when considering the random uncertainty of the load.

The vibrations of the mean function of the beam deflection died with time and attain its maximum at the
mid span as expected as shown in Fig. 2. This is due to the mathematical nature of the load equation (28).

Appendix A. On stochastic integrals

A second order s.p. X ðt;xÞ is characterized by that its m.s. is finite, i.e.

X ðtÞk k2 ¼ EX 2ðt;xÞ < 1; t 2 T ðA:1Þ

and the sequence Xnðt;xÞ; t 2 Tf g of second order s.p. converges to a second order s.p. on T iff the cor-
relation functions E Xnðt;xÞXmðs;xÞ; t 2 Tf g converge to a finite function EX ðt;xÞX ðs;xÞ as n;m ! 1 in
any manner whatever (Soong, 1973, p. 89). Also, a second order s.p. is m.s. continuous iff its correlation
function is continuous.

Theorem A.1.

The s.p. Y ðuÞ ¼
R b
af ðt; uÞX ðt;xÞdt 9 iff the ordinary double Riemann integral

Z b

a

Z b

a
f ðt; uÞf ðs; uÞCXX ðt; sÞdtds

exists and is finite, where CXX ðt; sÞ is the correlation function of X ðtÞ (Soong, 1973, p. 100).
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Theorem A.2.

If Y ðuÞ ¼
Z b

a
f ðt; uÞX ðt;xÞdt 9 then

EY ðuÞ ¼
Z b

a
f ðt; uÞ:EX ðt;xÞdt;

also,

CYY ðu; vÞ ¼
Z b

a

Z b

a
f ðt; uÞf ðs; vÞCXX ðt; sÞdtds;

Soong (1973, p. 104).
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